

Elucidating the role of FUS mutant oligodendrocytes in the pathophysiology of ALS using induced pluripotent stem cells

Neyrinck Katrien¹, Garcia-Leon Juan¹, Eggermont Kristel¹, Guo Wenting², Van Den Bosch Ludo², Verfaillie Catherine¹

¹Stem Cell Institute Leuven, Department of Development and Regeneration, KU Leuven, Belgium ²Laboratory for Neurobiology, Department of Neurosciences, KU Leuven, Belgium

INTRODUCTION

- FUS-linked ALS causes an aggressive form of the disease associated with a juvenile onset and short survival
- Most ALS-linked mutations are found in the nuclear localization signal (NLS) of the FUS protein causing cytoplasmic mislocalization
- Oligodendrocytes are known to play a role in the ALS pathogenesis as oligodendrocyte degeneration and myelin

Early oligodendrocytes

defects are observed in post mortem spinal cord tissue of ALS patients
How do FUS mutant oligodendrocytes contribute to the ALS pathology?

METHODS

Differentiation

lav0 – dav

+LDN + SB

PSCs

asal medium + RA

Basal mediun

+ RA + SAG

By overexpressing SOX10 at neural stem cell (NSC) stage, O4⁺ early oligodendrocytes are generated that express myelin basic protein (MBP) **SOX10 transduction**

day14 – day24

Differentiation mediur

Oligodendrocyte

NSCs

iPSC lines used

Cytoplasmic FUS mislocalization is observed for FUS^{P525L} iPSCs

FAILURE OF FUS^{P525L} MUTANT CELLS TO GENERATE O4⁺ OLIGODENDROCYTES?

TRANSCRIPTOMIC ANALYSIS SUGGESTS LIPID AND CYTOSKELETAL DEFECTS IN FUS MUTANT O4+ CELLS

(7 days after SOX10 transduction)

Gene Ontology: biological process

Differentially expressed genes between FUS^{P525L} mutant O4⁺ cells and their isogenic control

Gene ontology ID	Biological Process	FDR
GO:0000226	microtubule cytoskeleton organization	5.1E-8
GO:0048285	organelle fission	5.9E-8
GO:0007017	microtubule-based process	1.5E-7
GO:0007417	CNS development	3.2E-7
GO:0007049	Cell cycle	4.1E-7

Differentially expressed genes between FUS^{R521H} mutant O4⁺ cells and their isogenic control

Gene ontology ID	Biological Process	FDR
GO:0040011	Locomotion	3.8E-12
GO:0048870	Cell motility	1.8E-9
GO:0007417	CNS development	3.8E-9
GO:0007155	Cell adhesion	6.3E-9
GO:0006928	Movement of cell/subcellular component	6.3E-9

qRT-PCR demonstrates that oligodendrocyte gene expression is similar in O4⁺ cells from FUS^{P525L} and FUS^{P525P} iPSCs

qRT-PCR demonstrates that oligodendrocyte gene expression is similar in O4⁺ cells from FUS^{R521H} and FUS^{R521R} iPSCs

KEGG Human 2019

FUTURE PERSPECTIVES

- Validate results from transcriptomic analysis which might uncover candidate novel drug targets
- Co-culture of FUS mutant oligodendrocytes with normal donor iPSC neurons are being performed to assess possible toxic/non-supportive effects of the oligodendrocytes

SOX10 OVEREXPRESSION FROM AAVS1 LOCUS TO AVOID USE OF LENTIVIRAL VECTORS

