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Background
ALS progression is highly variable and patient survival times are difficult to predict. A big data approach to survival analysis may be the 
only way to capture this variance and develop  clinically viable models. This poster outlines an initial attempt to predict survival times 
on a large, international sample of ALS patients (Dataset 1) using a ‘Gradient Boosting Classifier’ (machine learning ensemble model, 
‘GBC’).  The training features/covariates used were clinical phenotypes such as age and site of onset. Following this, the same model 
type was applied to a smaller dataset of participants all of whom had SOD1 mutations alongside clinical phenotype data (Dataset 2). 
We assess the impact of SOD1 genotype information on model accuracy.  

Methodology
Data collection and pre-processing:
Pre-processing of dataset 1 involved the removal of participants with 
missing data and the exclusion of patients with incorrect data resulting 
from mistakes during data entry (e.g. age of onset = 0). The final 
sample size was 2835 with age of symptom onset ranges from 19 to 90 
and a gender split of m_0.60:f_0.40. The diagnostic delay was 
normalised with respect to country of data origin – this was not 
possible for dataset 2. Participants and features with missing values 
were also removed from dataset 2. Dataset 2 had 107 participants with 
a gender ratio m_0.54:f_0.46. In both datasets, Patients were binned 
into 3 survival classes; 0-24 months (short), 24 – 60 months (medium) 
and 60+ months (long).  This is a common class setup and allows direct 
comparison with previous literature [1]. 

GBC implementation:
The in built sk-learn GBC model was applied to both datasets. The 
model hyper-parameter values were optimised using a hill climbing 
algorithm to increase model accuracy - cross validation was 
incorporated to reduce overfitting.
The model allows for feature importance scores to be extracted which 
highlight the clinical phenotypes most useful for survival prediction. 

GBC:
The GBC is similar to a random forest. First, a base learner is 
defined; a decision tree. The decision tree is trained on the 
data [Figure 1]. Then, a second tree is trained based on the 
error or ‘residuals’ of the first tree. This process is repeated 
iteratively for the desired number of trees. To predict for a 
new datapoint, the outputs of each tree are combined 
together. This method has been shown to outperform typical 
random forests when trained in a similar context. 

The model trained on dataset 1 has higher accuracy overall, likely 
due to the increased sample size. However, the accuracy for 
predicting short term survival is very similar. This suggests that a 
small sample size is sufficient to discriminate between short and 
long term survivors, though the results demonstrate a high false 
negative rate for this low sample training in medium and long 
survival patients. 
In dataset 1, location of data origin was the 3rd most important 
predictive feature. This may suggest that differences in practice 
between ALS centres are biasing patient data. 
‘aa change’ (SOD1 genotype) is the most important predictor of 
survival in dataset 2. 
Through random subsampling, dataset 1 was reduced to a sample 
size of 107 to compare fairly against dataset 2. subsampling was 
applied multiple times and model accuracies varied between 0.4 
and 0.7. This variability suggests that the low sample training 
models are not robust. 
Although accuracies varied greatly, the distribution of feature 
importance did not, this suggests that SOD1 genotype is a stable 
predictor of survival. 
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Figure 1: The development of a decision tree. Here, a 
dataset with 2 features and binary classification is 
segmented  by a tree to give optimal data splits. This 
allows for accurate classification of unlabelled datapoints. 

Results

Figure 2:
Class proportions: D1: short = 0.31, medium = 0.42, long = 0.26         D2: short = 0.23, 
medium = 0.23, long = 0.54
a/b) confusion matrices for dataset 1 and 2 respectively. True positive classifications 
are positioned along the diagonal of the matrix. 
c/d) bar plots showing how important each training feature is for predicting survival.
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